Clustering Coefficients for Correlation Networks
نویسندگان
چکیده
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.
منابع مشابه
Signal processing approaches as novel tools for the clustering of N-acetyl-β-D-glucosaminidases
Nowadays, the clustering of proteins and enzymes in particular, are one of the most popular topics in bioinformatics. Increasing number of chitinase genes from different organisms and their sequences have beenidentified. So far, various mathematical algorithms for the clustering of chitinase genes have been used butmost of them seem to be confusing and sometimes insufficient. In the...
متن کاملGeneralization of Clustering Coefficients to Signed Correlation Networks
The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coe...
متن کاملClustering Coefficients for Weighted Networks
The clustering coefficient has been used successfully to summarise important features of unweighted, undirected networks across a wide range of applications. Recently, a number of authors have extended this concept to the case of networks with non-negatively weighted edges. After reviewing various alternatives, we focus on a definition due to Zhang and Horvath that can be traced back to earlier...
متن کاملA Synthetical Weights’ Dynamic Mechanism for Weighted Networks
We propose a synthetical weights’ dynamic mechanism for weighted networks which takes into account the influences of strengths of nodes, weights of links and incoming new vertices. Strength/Weight preferential strategies are used in these weights’ dynamic mechanisms, which depict the evolving strategies of many real-world networks. We give insight analysis to the synthetical weights’ dynamic me...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کامل